
2D/3D Skeletonization Using Sequential/Parallel Thinning

ECE AIP Project 3, April 15, 2009

Wei Lu 00649439

1. Introduction

Skeletonization is a morphology operation that erodes an object iteratively until
it is unit pixel/voxel wide while following the geometry preservation and the
connectivity preservation.

In this project, we apply sequential thinning method [1] to deal with 2D case and
parallel thinning method [2] to deal with the 3D case. Schemes to detect end
points and junction points are proposed respectively.

2. Basic Morphology Operations

Binary Erosion
The erosion of object X by structuring element B composes of all the elements
belong to X such that there : the shift-by-b version of those elements
also belong to X. Mathematically,

 | , (1)

Hit-or-Miss Transformation
The hit-or-miss transformation (HMT) of object X by structuring element

, composes all the elements belong to X such that for
and : the shift-by-b1 version of those elements belong to X while the
shift-by-b2 version of that element must belong to the exterior of X.
Mathematically,

 | ;
 ; , (2)

It can be shown that
 (3)

Thinning Operation
Thinning, one application of hit-or-miss transformation, is defined as

\ (4)

3. Proposed 2D Skeletonization Method and End Points, Bifurcations

Detection

In our 2D skeletonization method, we iteratively apply sequential thinning
operation with Golay alphabet of structuring elements ‘L’ and ‘E’ (see Fig. 1)
followed with a group of correction structuring elements ‘C’ (see Fig. 2). Note,
thinning with structuring elements ‘L’ and ‘E’ alone wouldn’t work with some

object structures as shown in Fig. 2 but can be thinned by our correction
structuring elements.

The detection of end points is realized by HMT with a group of structuring
elements ‘I’ shown in Fig. 3. Finally, bifurcations are detected by HMT with a
group of structuring elements ‘Y’ and ‘T’ which are shown in Fig. 4. The generic
outline of this skeletonization as well as the detection algorithm is given in
Algorithm 1. Note, structuring element ‘L’ is actually a deleting element, element
‘E’ is used to smooth the obtained skeleton, and the ‘L’ operation right after the
‘E’ operation is necessary because there exists the case that some one-pixel
elements prevent the correct deletion provided by the ‘L’ operation.

Program 2D _Skeletonization

Skeletonized_Object = 2D_Sequential_Thinning (Object);
End_Points = 2D_End_Points_Detection (Skeletonized_Object);
Bifurcations = 2D_Bifurcations_Detection (Skeletonized_Object);
Display ();

End 2D _Skeletonization

Program 2D_Sequential_Thinning

Do
 Object = Thinning (Object, ‘L’);
While not convergent
Do

Object = Thinning (Object, ‘E’);
Object = Thinning (Object, ‘L’);
Object = Thinning (Object, ‘C’);

While not convergent
End 2D_Sequential_Thinning

Program 2D_End_Points_Detection

End_Points = HMT (Skeletonized_Object, ‘I’);
End 2D_End_Points_Detection

Program 2D_Bifurcations_Detection

Bifurcations = HMT (Skeletonized_Object, ‘T’ & ‘Y’);
End 2D_ Bifurcations _Detection

Algorithm 1. 2D skeletonization with end points, bifurcations detection

4. Proposed 3D Skeletonization Method and End Points, Junction Points

Detection

In our 3D skeletonization method, we apply Ma and Sonka’s parallel thinning
method [2] with structuring elements A, B, C, and D (most of them are 5-by-5-
by-5 masks, see Fig. 5 for details). The detection of tail points is achieved with
the following rules defined in [2]:

 p is called a line-end point if p is 26-adjacent to exactly one object point,

 p is called a near-line-end point if p is 26-adjacent to exactly two object
points which are:
 either s(p) and e(p), or s(p) and u(p) but not both;
 either n(p) and w(p), or u(p) and w(p) but not both;
 either n(p) and d(p), or e(p) and d(p) but not both;

 p is called a tail point if it is either a line-end point near-line-end point;
otherwise it is called a ‘‘non-tail point’’, where e(p), w(p), n(p), s(p), u(p) and
d(p) are the east, west, north, south, up, and down neighbors of p,
respectively.

Note the process of tail point detection and 3D skeletionization are indeed
(recursively) embedded with each other. Just see that tail point detection will
generate new tail points by using the current result of 3D skeletonization, while
in each thinning step of 3D skeletonization, we need to keep those known tail
points as undeletable elements.

When it comes to junction point detection, the explicit enumeration of all
possible structuring elements in 3D would become extremely clumsy. Just
imagine the case of extending 2D structuring elements ‘Y’ and ‘T’ to 3D would
hopefully yield 80 more times structuring element. One possible rescue as well
as exploiting the 2D elements is to respectively project 26-adjancent
neighboring (N26) elements to xy, yz, zx plane, and then apply 2D bifurcations
detection scheme we mention in Section 3. Note here the projection resembles
a logical addition.

Well, unfortunately that’s not the whole story of 3D structuring elements. Some
special structures are not simply the extension of their 2D versions (See Fig. 6).
What we did in this project only exploited the simple extension from 2D
structuring elements. Therefore further improvement can be made if better
junction point detection scheme is used. The generic outline of this
skeletonization as well as the detection algorithm is given in Algorithm 2.

Program 3D _Skeletonization

Skeletonized_Object = 3D_Parallel_Thinning (Object);
Tail_Points = 3D_Tail_Points_Detection (Skeletonized_Object);
Junction_Points = 3D_Junction_Points_Detection (Skeletonized_Object);
Display ();

End 3D _Skeletonization

Program 3D_Parallel_Thinning

Do
Tail_Points = 3D_Tail_Points_Detection (Object);
Object1 = Thinning (Object, ‘A’);
Object2 = Thinning (Object, ‘B’);
Object3 = Thinning (Object, ‘C’);
Object4 = Thinning (Object, ‘D’);
Object = Intersection (Object1, Object2, Object3, Object4);
Restore_Tail_Points (Object,Tail_Points);

While not convergent
End 3D_Parallel_Thinning

Program 3D_Tail_Points_Detection

For each voxel V of current skeletonized Object
N = Count_Point#_In_N26 (Object,V);
If (N == 1 or (N == 2 and the neighbors are positioned in a near‐line‐end way))

V is a tail point;
End if

End for
End 3D_Tail_Points_Detection

Program 3D_Junction_Points_Detection

Nx = N26_Projection_X (Skeletonized_Object);
Ny = N26_Projection_Y (Skeletonized_Object);
Nz = N26_Projection_Z (Skeletonized_Object);
For each projection slice S

Junction_Points += 2D_Bifurcation_Detection (S);
End for
Junction_Points += 3D_Structures_Exception_Detection (Skeletonized_Object);

End 3D_Junction_Points_Detection

Algorithm 2. 3D skeletonization with end points, junction points detection

5. Experiment Results
Some primary experiment results are shown in Fig. 7.

6. Conclusion
Originated from some ideas in literature, we develop a 2D/3D skeletonization
method based on sequential/parallel thinning operation. It can preserve the
geometric and connectivity characteristics to some extent.

Fig. 1 2D Structuring Element L: the white block indicates 1 while black one indicates 0.
The first piece is L1, and the second piece is L2 where L = (L1, L2). It follows the same
rule in the next few 2D figures.

Fig. 1 2D Structuring Element E

Fig. 2 2D Structuring Element C

Fig. 3 2D Structuring Element I

Fig. 4 2D Structuring Element T

Fig. 4 2D Structuring Element Y

Fig. 5 3D Structuring Element A

Fig. 5 3D Structuring Element B

Fig. 5 3D Structuring Element C

Fig. 5 3D Structuring Element D

Fig. 5 3D Structuring Element D (cont’d)

Fig. 5 3D Structuring Element D (cont’d)

Fig. 7 2D skeletonization result (end points are in yellow and junctions are in red)

Fig. 7 3D skeletonization result (end points are in green and junction points are in red)

Reference:
[1] M. Sonka et al, Image Processing, Analysis, and Machine Vision (3rd ed, 2008)
[2] C. Ma and M. Sonka, A Fully Parallel 3D Thinning Algorithm and Its
Applications, in Computer Vision and Image Understanding, 1996

